Crosslinking and composition influence the surface properties, mechanical stiffness and cell reactivity of collagen-based films
نویسندگان
چکیده
This study focuses on determining the effect of varying the composition and crosslinking of collagen-based films on their physical properties and interaction with myoblasts. Films composed of collagen or gelatin and crosslinked with a carbodiimide were assessed for their surface roughness and stiffness. These samples are significant because they allow variation of physical properties as well as offering different recognition motifs for cell binding. Cell reactivity was determined by the ability of myoblastic C2C12 and C2C12-α2+ cell lines (with different integrin expression) to adhere to and spread on the films. Significantly, crosslinking reduced the cell reactivity of all films, irrespective of their initial composition, stiffness or roughness. Crosslinking resulted in a dramatic increase in the stiffness of the collagen film and also tended to reduce the roughness of the films (R(q) = 0.417 ± 0.035 μm, E = 31 ± 4.4 MPa). Gelatin films were generally smoother and more compliant than comparable collagen films (R(q) = 7.9 ± 1.5 nm, E = 15 ± 3.1 MPa). The adhesion of α2-positive cells was enhanced relative to the parental C2C12 cells on collagen compared with gelatin films. These results indicate that the detrimental effect of crosslinking on cell response may be due to the altered physical properties of the films as well as a reduction in the number of available cell binding sites. Hence, although crosslinking can be used to enhance the mechanical stiffness and reduce the roughness of films, it reduces their capacity to support cell activity and could potentially limit the effectiveness of the collagen-based films and scaffolds.
منابع مشابه
Investigating the morphological, mechanical and degradation properties of scaffolds comprising collagen, gelatin and elastin for use in soft tissue engineering.
Collagen-based scaffolds can be used to mimic the extracellular matrix (ECM) of soft tissues and provide support during tissue regeneration. To better match the native ECM composition and mechanical properties as well as tailor the degradation resistance and available cell binding motifs, other proteins or different collagen types may be added. The present study has explored the use of componen...
متن کاملCrosslinking and mechanical properties significantly influence cell attachment, proliferation, and migration within collagen glycosaminoglycan scaffolds.
Crosslinking and the resultant changes in mechanical properties have been shown to influence cellular activity within collagen biomaterials. With this in mind, we sought to determine the effects of crosslinking on both the compressive modulus of collagen-glycosaminoglycan scaffolds and the activity of osteoblasts seeded within them. Dehydrothermal, 1-ethyl-3-3-dimethyl aminopropyl carbodiimide ...
متن کاملThe Study of Collagen Immobilization on a Novel Nanocomposite to Enhance Cell Adhesion and Growth
Background: Surface properties of a biomaterial could be critical in determining biomaterial’s biocompatibility due to the fact that the first interactions between the biological environment and artificial materials are most likely occurred at material’s surface. In this study, the surface properties of a new nanocomposite (NC) polymeric material were modified by combining plasma treatment and...
متن کاملSliding Friction Contact Stiffness Model of Involute Arc Cylindrical Gear Based on Fractal Theory
Gear’s normal contact stiffness played an important role in the mechanical equipment. In this paper, the M-B fractal model is modified and the contact surface coefficient is put forward to set up the fractal model, considering the influence of friction, which could be used to calculate accurately the involute arc cylindrical gears’ normal contact stiffness based on the fractal theory and Hertz ...
متن کاملPreparation and characterization of collagen food packaging film
Collagen was extracted from the skin of pigs, and blended with sodium alginate, starch, and sodium carboxymethyl cellulose. Food packaging films were obtained by crosslinking the blend with glutaraldehyde. Fourier transform infrared spectroscopy (FT-IR), SEM and TGA analyses were used to characterize the resulting films. A strong hydrogen bonding was detected between the composite film molecule...
متن کامل